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1 Introduction

A generalization of the well known Abelian [1] and non-Abelian [2] T-dualities is the so-

called Poisson-Lie T-duality [3]. Its most notable feature is that it does not rely on the

existence of isometries but rather on a rigid group-theoretical structure [3]. Nevertheless, it

shares some common features with ordinary T-duality. For instance, it can be explicitly for-

mulated as a canonical transformation between phase-space variables [4, 5], similarly to or-

dinary T-duality [6, 7], a property that seems to be very important for our considerations.1

An important question that was addressed successfully in a particular example in [10]

is whether classically equivalent, via canonical transformations, models retain their equiv-

alence beyond the classical level in the following sense. As two-dimensional field theories,

these σ-models are renormalizable if the corresponding counter-terms, at a given order in

a loop expansion, can be absorbed into a renormalization of the various coupling constants

appearing in the model up to field redefinitions or, equivalently, diffeomorphisms in the

target space. These give rise to beta-function renormalization group equations which gen-

erally form a non-linear coupled system of first order differential equations. The classical

equivalence of the two models can be promoted order by order in perturbation theory into

1Related developments include works on open string boundary conditions (see, for instance, [8, 9]).
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the quantum level if the two different renormalization group flow systems of equations

are in fact equivalent. In turn, this strongly hints towards their equivalence beyond the

classical level. The existence of a canonical transformation relating two different σ-models

seems to be necessary for their equivalence at the quantum level.2 A general proof for

all Poisson-Lie T-duality related models requires the generalized Ricci tensor. The latter

was computed in [13] where it was shown that Poisson-Lie T-duality related models are

renormalizable in the above described sense.

The main objective of the present work is to show the equivalence of the renormaliza-

tion group flow for general σ-models related by Poisson-Lie T-duality. We study properties

of the flows and prove several general statements regarding mainly the possible truncations

of the parameter space in a way consistent with the renormalization group equations. We

also investigate the generalized coset models introduced in [14] at the purely classical level.

Finally, we present some explicit examples based on three-dimensional algebras.

2 Brief review of Poisson-Lie T-duality

In the section we review the most relevant aspects of Poisson-Lie T-duality for our purposes

by following the conventions of [4, 5, 10, 14]. In the absence of spectator fields, the dual

two-dimensional σ-model actions are [3]

S =
1

2λ

∫

EabL
a
µLb

ν∂+Xµ∂−Xν , E = (M −Π)−1 , (2.1)

and

S̃ =
1

2λ

∫

ẼabL̃aµL̃βν∂+X̃µ∂−X̃ν , Ẽ = (M−1 − Π̃)−1 . (2.2)

The field variables Xµ and X̃µ, with µ = 1, 2, . . . , dG parametrize elements g and g̃ of two

groups G and G̃, respectively, of equal dimension. We introduce representation matrices,

{Ta} and {T̃ a} with a = 1, 2, . . . , dG, of the associated Lie algebras which form a pair

of maximally isotropic subalgebras into which the Lie algebra of a group, known as the

Drinfeld double, can be decomposed.3 The commutation relations are

[Ta, Tb] = ifab
cTc ,

[

T̃ a, T̃ b
]

= if̃ab
cT̃

c ,
[

Ta, T̃
b
]

= if̃ bc
aTc − ifac

bT̃ c (2.3)

and imply the Jacobi identities (in our conventions (ab) = ab + ba and [ab] = ab− ba)

fab
dfdc

e + fca
dfdb

e + fbc
dfda

e = 0 ,

f̃ab
df̃

dc
e + f̃ ca

df̃
db

e + f̃ bc
df̃

da
e = 0 ,

fab
df̃ ce

d + fd[a
cf̃de

b] − fd[a
ef̃dc

b] = 0 . (2.4)

2As a counterexample note the case of the Principal Chiral model and the Pseudodual Chiral model [11]

whose classical solutions are in one-to-one correspondence but which are not canonically equivalent [6]. It

is well known that their quantum behaviors are drastically different [12].
3A generalization of Poisson-Lie T-duality named Poisson-Lie T-plurality [15]-[17] is based on the non-

uniqueness of the decomposition of the Drinfeld double.
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Introducing a bilinear invariant 〈·|·〉 with the various representation matrices obeying

〈Ta|Tb〉 = 〈T̃ a|T̃ b〉 = 0 , 〈Ta|T̃ b〉 = δa
b , (2.5)

we define the components of the Maurer-Cartan forms appearing in the above actions as

La
µ = −i〈g−1∂µg|T̃ a〉 , L̃aµ = −i〈g̃−1∂µg̃|Ta〉 . (2.6)

The overall coupling constant is λ in (2.1) and (2.2) is assumed to be positive and the

square matrix M is constant and has dimension dG. The matrices Π and Π̃ depend on the

variables Xµ and X̃µ via the corresponding group elements g and g̃, respectively. They are

defined as

Πab = bcaac
b , Π̃ab = b̃caã

c
b , (2.7)

where the matrices a(g), b(g) are constructed using

g−1Tag = aa
bTb , g−1T̃ ag = babTb + (a−1)b

aT̃ b . (2.8)

Consistency restricts them to obey

a(g−1) = a−1(g) , bT (g) = b(g−1) , ΠT (g) = −Π(g) , (2.9)

We also define the dual tilded symbols with similar properties.

3 Renormalization group and Poisson-Lie T-duality

We begin this section with a short review of the renormalization group in two-dimensional

field theories with curved target spaces. The σ-models (2.1) and (2.2) are of the form

S =
1

2λ

∫

Q+
µν∂+Xµ∂−Xν , Q+

µν ≡ Gµν + Bµν . (3.1)

As a two-dimensional field theory for the fields Xµ, this will be renormalizable if the cor-

responding counter-terms, at a given order in a loop expansion, can be absorbed into a

renormalization of the coupling constant λ and (or) of some parameters labeled collectively

by ai, i = 1, 2, . . . . In our case these are the entries of the matrix Mab and the overall cou-

pling constant λ. In doing so, we may allow for general field redefinitions of the Xµ’s, which

are coordinate reparametrizations in the target space. This definition of renormalizability

of σ-models is quite strict and similar to that for ordinary field theories. An extension of

this is to allow for the manifold to vary with the mass scale and the renormalization group

to act in the infinite-dimensional space of all metrics and torsions [18], but this will not be

needed for our purposes.

The one-loop beta-functions are expressed as

dλ

dt
=

λ2

π
J1 ,

dai

dt
=

λ

π
ai

1 , (3.2)

where t = ln µ, with µ being the mass energy scale and J1, a
i
1 and Xµ

1 are chosen so that

1

2
R−

µν = −J1Q
+
µν + ∂aiQ+

µνai
1 + ∂λQ+

µνXλ
1 + Q+

λν∂µXλ
1 + Q+

µλ∂νXλ
1 . (3.3)

Here R−
µν are the components of the generalized Ricci tensor defined with a connection

that includes the torsion, i.e. Γµ
νρ − 1

2Hµ
νρ. The counter-terms were computed in [18–20].
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3.1 One loop renormalization group for Poisson-Lie T-duals

For the Poisson-Lie T-duality related actions (2.1) and (2.2) it was first shown that it

is possible to satisfy the system (3.3) in the case of a six-dimensional Drinfeld double

in [10, 14].4 This made plausible that it could be true for at least a large class of such

doubles. A general proof requires the computation of the generalized Ricci tensor for each

σ-model separately. Using the underlying Poisson-Lie structure and in particular some

useful identities derived in [5] this was done in [13],5 where it was also shown that the

models are one-loop renormalizable in the sense explained above.

We define for convenience the following quantities

Aab
c = f̃ab

c − fcd
aMdb , Bab

c = f̃ab
c + Madfdc

b , (3.4)

as well as their duals

Ãab
c = fab

c − f̃ cd
a(M

−1)db , B̃ab
c = fab

c + (M−1)adf̃
dc

b , (3.5)

Using these we construct also

Lab
c =

1

2
(M−1

s )cd

(

Bab
eM

ed + Adb
eM

ae −Aad
eM

eb
)

,

Rab
c =

1

2
(M−1

s )cd

(

Aab
eM

de + Bad
eM

eb −Bdb
eM

ae
)

(3.6)

and

L̃ab
c =

1

2
(M̃−1

s )cd
(

B̃ab
e(M−1)ed + Ãdb

e(M−1)ae − Ãad
e(M−1)eb

)

,

R̃ab
c =

1

2
(M̃−1

s )cd
(

Ãab
e(M−1)de + B̃ad

e(M−1)eb − B̃db
e(M−1)ae

)

, (3.7)

where6

Ms =
1

2

(

M + MT
)

, M̃s =
1

2

[

(M−1) + (M−1)T
]

. (3.10)

From the results in [13] we deduce that the one-loop renormalization group flow system

of equations corresponding to (2.1) is

dMab

dt
=

λ

2π
Rac

dL
db

c . (3.11)

4For Abelian and non-Abelian dualities, similar investigation were performed for a one-parameter family

deformations of the Principal Chiral model for SU(2), and its non-Abelian dual [6, 21], in [21].
5To compare our conventions with those in [13] one should perform the following replacements in that

paper. Namely, we send g → g−1, Π → −Π and Π̃ → −Π̃ .
6Note also the identities

R
ab

b = f̃
ab

b + M
ab

fbc
c + (MM

−1

s M)bc
fbc

a
, R

ba
b = 0 (3.8)

and

L
ab

b = 0 , L
ba

b = −f̃
ab

b + M
ba

fbc
c
− (MM

−1

s M)bc
fbc

a
. (3.9)

Similar relations hold for the tilded dual quantities.
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Similarly, for its dual (2.2) we have

d(M−1)ab

dt
=

λ

2π
R̃ac

dL̃db
c , (3.12)

Also it turns out that the overall coupling λ does not get renormalized, as noticed already

in a particular example in [14]. Hence, we may, in the remaining of this paper absorb, for

notational convenience, the overall factor
λ

2π
into a redefinition of t.

3.2 Proof of compatibility

In order to show that Poisson-Lie T-duality holds at the one-loop quantum level we have

to demonstrate compatibility with the renormalization flow equations. This will be explicit

if the two systems (3.11) and (3.12) are if fact equivalent.

We first note the, easy to prove, relations

Aab
c = −MdbÃcd

a , Bab
c = MadB̃dc

b , (3.13)

their dual (which give no further information)

Ãab
c = −(M−1)dbA

cd
a , B̃ab

c = (M−1)adB
dc

b (3.14)

and that

Ms = MM̃sM
T = MT M̃sM . (3.15)

Next we note the useful identities

Rab
c = MadMeb(M−1)fcR̃de

f , Lab
c = −MadMeb(M−1)cf L̃de

f . (3.16)

To prove them we start form the right hand side in the first identity which using (3.14)

and (3.15) can be cast into the following form

1

2
(M−1

s )cd

(

−MaeAdb
e + MdeBab

e −MebBda
e

)

. (3.17)

To proceed we note that from the definitions (3.4) we have

Adb
e = Bdb

e −Mdfffe
b −Mfbfef

d ,

Bab
e = Aab

e + Mafffe
b + Mfbfef

a ,

Bda
e = −Bad

e + Mafffe
d + Mdfffe

a . (3.18)

Substituting into (3.17) we obtain

1

2
(M−1

s )cd

(

Aab
eM

de + Bad
eM

eb −Bdb
eM

ae
)

+
1

2
(M−1

s )cd

(

ffe
bMaeMdf + fef

dMaeMfb

+ ffe
bMdeMaf + fef

aMdeMfb − ffe
dMebMaf − ffe

aMebMdf
)

. (3.19)

– 5 –
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The parenthesis in the first line is simply Rab
c, whereas the remaining terms vanish. The

second identity in (3.16) follows from a similar computation. Alternatively, one can prove

it by noticing the transformation

M → −MT =⇒ Rab
c ←→ −Lba

c , R̃ab
c ←→ −L̃ba

c . (3.20)

Using (3.16) one easily sees that the system (3.11) implies (3.12) and vice versa.

Hence, we conclude that, at one-loop in perturbation theory, general σ-models related

by Poisson-Lie T-duality are equivalent under the renormalization group flow.

4 Properties of renormalization group flow

In this section we study several properties of the renormalization group equations. First

note that, setting the matric M proportional to the identity is not consistent with the

renormalization group equations for general Drinfeld doubles. It is, however, consistent for

abelian G̃’s, in the basis where the identity is the invariant metric for the group G.

Consider next a subgroup H of G and another H̃, of equal dimension, subgroup of G̃.

We split the index a = (i, α), where i = 1, 2, . . . ,dim(H) and α = 1, 2, . . . ,dim(G/H). We

note in passing that, H and H̃ form a Drinfeld double as well. This can be easily seen by

restricting the four free indices in the mixed Jacobi identity in (2.4) to the subgroup.

We will use the following notation for the matrices Mab and Πab

(Mab) =

(

H ij M iβ

Mαj Kαβ

)

, (Πab) =

(

Πij
0 Πiα

2

−Πjβ
2 Παβ

1

)

. (4.1)

and similarly for Π̃ab.

4.1 Consistent truncation of the parameter space

A natural question to investigate is to what an extend we may choose in the matrix (4.1)

the mixed-index elements to be zero, namely that

M iα = Mαi = 0 . (4.2)

We will find the conditions under which the matrix M remains of a block diagonal form,

under the renormalization group flow. In general we have

dM iα

dt
= Ric

dL
dα

c = Rij
kL

kα
j + Riβ

kL
kα

β + Rij
βLβα

j + Riβ
γLγα

β . (4.3)

With the choice (4.2) and using that fij
α = fkβ

l = 0, it is easy to compute that the

quantities defined in (3.4)–(3.7) are zero when two indices are latin letters and one is a

greek one. In addition, the form of Lγα
β is that of (3.6) with the latin-letter indices replaced

by greek ones, hence projected completely into the coset space. We conclude that, in the

right hand side of (4.3) only the last term is non-vanishing. Hence, a sufficient condition

to preserve the choice (4.2) under renormalization group flow is that the coset spaces G/H

and G̃/H̃ are symmetric, i.e. the structure constants fαβ
γ = f̃αβ

γ = 0. This is not a

– 6 –
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necessary condition as well, even in the abelian G̃ case. An example is the non-symmetric

coset space SU(3)/SU(2). We will present the details in section 5.

Finally, for later use, we write the factor

Riβ
γ =

1

2
(K−1

s )γδ

(

H il(flζ
δKζβ + flζ

βKδζ − f̃ δβ
l) + Kδζ(f̃ iβ

ζ − fζη
iKηβ)− f̃ iδ

ζK
ζβ
)

.

(4.4)

4.2 Generalized coset spaces

Let’s examine the behaviour and equivalence under renormalization group flow of a class

of σ-models introduced at the purely classical level in [14]. Consider the limit

H ij →∞ ⇐⇒ (H−1)ij → 0 , (4.5)

in a uniform way for all matrix elements, meaning that ratios of matrix elements remain

constant in this limit. Then, the action (2.1) takes the form

S =
1

2λ

∫

ΣαβLα
µLβ

ν∂+Xµ∂−Xν . Σ = (K −Π1)
−1 . (4.6)

Since

M−1 =

(

0 0

0 K−1

)

+O
(

H−1
)

, (4.7)

the dual action (2.2) becomes

S̃ =
1

2λ

∫

Σ̃ABL̃AµL̃Bν∂+X̃µ∂−X̃ν , Σ̃ =

(

Π̃0 Π̃2

−Π̃2 K−1 − Π̃1

)

. (4.8)

Upon taking the limit (4.5) the number of variables in the two actions has been reduced to

dim(G/H). The reduced dimensionality of (2.1) happens since, after taking the limit (4.5),

a local gauge invariance develops provided that certain conditions hold. In particular, it

has been shown that (4.6) is invariant under the local gauge transformation g → gh, with

h ∈ H, provided that the following conditions hold [14]

f̃αβ
i = fiγ

αKγβ + fiγ
βKαγ . (4.9)

Note that for abelian group G̃ this reduces to the usual condition in cosets G/H for an

invariant tensor [22] so that (4.9) presents the analog of this condition for our generalized

cosets. Also, when G̃ is non-abelian it is not consistent to take K to be a symmetric matrix.

Then, we may gauge-fix the dim(H) parameters in the group element g ∈ G. The most

efficient way, that completely fixes the gauge, is to parametrize as g = κh, where h ∈ H

and κ ∈ G/H, and then set h = I.

4.2.1 Renormalization group flow

We would like first to investigate if the limit (4.5) is consistent with the renormalization

group equations (3.11), (3.12). In general

dK−1
αβ

dt
= R̃αc

dL̃dβ
c = R̃αi

jL̃jβ
i + R̃αi

γL̃γβ
i + R̃αγ

iL̃iβ
γ + R̃αγ

δL̃δβ
γ . (4.10)

– 7 –
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In the limit (4.5), (M−1)iα and (M−1)αi as well as the quantities (3.4)–(3.7) when two of

the indices are latin letters and one is a greek one, are of order (H−1)ij . Hence, the first

term in (4.10) vanishes. Among the remaining terms the last one is actually independent

of the matrix H. In the second term the factor R̃αi
γ has a finite part and a vanishing part

under the limit (4.5). Similarly, the second factor L̃γβ
i has a divergent part and a finite

part under this limit. The divergent part is

1

2
(H̃−1

s )ij
[

(fjβ
δ − f̃ δǫ

jK
−1
ǫβ )K−1

γδ − fγj
δK−1

δβ

]

. (4.11)

It can be easily seen that it vanishes upon using (4.9). Therefore, to compute in the

limit (4.5), the term R̃αi
γL̃ gβ

i we need to keep the finite part of both factors. With some

rearrangement we obtain

1

4
(HH−1

s )ik

[

fαi
ǫK−1

δǫ −K−1
αǫ (fδi

ǫ + K−1
δγ f̃γǫ

i)
] [

fγβ
k + K−1

γζ f̃ ζk
β + K−1

ζβ f̃ ζk
γ

]

. (4.12)

Using (4.9) we finally obtain

(HH−1
s )ikΓiαβ

k , (4.13)

where

Γiαβ
k =

1

2
fiη

δKηγ(K−1)αδ(fγβ
k + K−1

γζ f̃ ζk
β + K−1

ζβ f̃ ζk
γ) . (4.14)

To this term we should add a similar one coming from the third term in (4.10) which using

the transformation (3.20) reads

(HT H−1
s )ik∆iαβ

k , (4.15)

where

∆iαβ
k =

1

2
fiη

δKγη(K−1)δβ(fγα
k −K−1

ζγ f̃ ζk
α −K−1

αζ f̃ ζk
γ) . (4.16)

It is clear that, in order for the limit (4.5) to be independent of the form of the matrix H

the latter has to be symmetric.7 Denoting by

Γαβ = Γiαβ
i , ∆αβ = ∆iαβ

i , (4.17)

we finally have that, in the limit (4.5)

dK−1
αβ

dt
= Γαβ + ∆αβ + R̃αγ

δL̃δβ
γ . (4.18)

This would have been the result for the renormalization group flow system of equations for

the dual coset model (4.8). Note that for symmetric spaces the last term is zero and the

running is solely due to the first two terms. These could be thought of as a remnant of

the original full group structure in (2.2). Had we performed a similar limiting procedure

starting from the system (3.11) corresponding to the action (4.6) we would have obtained

dKαβ

dt
= Pαβ + Qαβ + Rαγ

δL
δβ

γ , (4.19)

7Alternatively, we may slightly modify the limit (4.5) to involve only the symmetric part of H .

– 8 –
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where

Pαβ = Pi
αβi , Qαβ = Qi

αβi , (4.20)

with

Pi
αβk =

1

2
fiγ

α
[

Kγη(f̃kβ
η − fηζ

kKζβ) + f̃kγ
ζK

ζβ
]

,

Qi
αβk = −1

2
fiγ

β
[

Kηγ(f̃kα
η + fηζ

kKαζ) + f̃kγ
ζK

αζ
]

. (4.21)

4.2.2 One loop equivalence

The equivalence of the systems (4.18) and (4.19) can be demonstrated by noting that there

exist expressions similar to (3.16) projected completely to the coset space indices, namely

that

Rαβ
γ = KαδKηβ(K−1)ζγR̃δη

ζ , Lαβ
γ = −KαδKηβ(K−1)ηζ L̃δη

ζ (4.22)

and in addition one may prove that

Pαβ = −KαγKδβΓγδ , Qαβ = −KαγKδβ∆γδ . (4.23)

Next we investigate when the condition (4.9) for being able to take the limit (4.5)

consistently, is preserved under the renormalization group flow. We demand that

fiγ
α dKγβ

dt
+ fiγ

β dKαγ

dt
= 0 . (4.24)

The only possibility that this is obeyed is that the right hand side of (4.19) is an invariant

tensor obeying a condition similar to (4.9). In the case with f̃ab
c = 0, (4.24) can be proven

by repeatedly using the Jacobi identity for the fab
c’s, the coset constraint on Kαβ (4.9) and

by taking Kαβ
s to be block diagonal. This can always be done by a proper transformation

of the group element g ∈ G on the action.8 For the case with f̃ab
c 6= 0 the proof is much

more complicated and we have just explicitly checked that this is indeed true for the cosets

of subsection 5.1 below.

Finally, we note that the limit (4.5) is not a fixed point of the renormalization group

flow in general. Consider the special case of H ij = Hδij with δij being the invariant metric

of the group. Then after some computations we obtain that

dH−1
ij

dt
=

1

4
fiklf

jkl − 1

4
(K−1

s )αγ(K−1
s )βδ f̃

αβ
if̃

γδ
j +O

(

H−1
)

. (4.26)

Note that the matrix remains under renormalization group flow symmetric, but no longer

diagonal. Also it is zero for abelian subgroups H, when simultaneously f̃αβ
i = 0.

The off diagonal elements do also flow even in the coset limit unless the space is

symmetric. Note that the flow is well defined since the coefficient of the H-dependent term

in (4.4) vanishes thanks to the condition (4.9).

8In the proof we also use the fact that

fiγ
η
fcη

d
fdζ

c
, fiγ

ε
fδε

η
fηζ

δ
, (4.25)

are antisymmetric under the interchange of γ and ζ.
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5 Examples

5.1 Six-dimensional doubles

In this section we first construct several examples based on a six-dim Drinfeld double

decomposition, into two three-dimensional Lie algebras. The associated three-dimensional

groups, G and G̃ have generators denoted by Ta and T̃ a, where a = 1, 2, 3. It is convenient to

split the index a = (3, α), with α = 1, 2. Abelian subgroups are generated by T3 and T̃ 3, so

that α takes values in the corresponding two-dimensional coset spaces. The non-vanishing

structure constants of the algebras next to be considered are

IX : fαβ
3 = f3α

β = ǫαβ , V : f3α
β = δαβ ,

V II0 : f3α
β = ǫαβ , II : fαβ

3 = ǫαβ , (5.1)

where we have labeled them according to the standard Bianchi classification for three di-

mensional algebras. Only four combinations of the above correspond to six-dim Drinfeld

doubles, namely (IX, V ), (V II0, II), (II, V ), (V, V II0), in a (G, G̃) notation. The renor-

malization group equations for the first pair has been constructed in [10] whereas a classifi-

cation of all six-dimensional doubles based on the Bianchi classification of three-dimensional

algebras can be found in [23] (see also [24] for further related issues).

Since fαβ
γ = f̃αβ

γ = 0, we may according to the results of subsection 4.1 take consis-

tently the form of the matrix Mab as block diagonal, namely

(Mab) =

(

1/G 0

0 Kαβ

)

, (Kαβ) =

(

A B

C D

)

. (5.2)

Taking the coset limit (4.5), whenever possible, corresponds to G→ 0.

The case of (IX, V ). This case was examined in detail in [14]. The beta-function

equations for the general matrix in (5.2), are quiet lengthy and they will not be presented

here. However, for Kαβ satisfying (4.9), the expressions become much simpler. Setting

A = D = a, B = −C = b− 1 and G = (1 + g)/a we find

da

dt
=

1 + a2 − b2

2a2
((g − 1)a2 + (g + 1)(b2 − 1)) ,

db

dt
=

b

a
(a2(g − 1) + (g + 1)(b2 − 1)) ,

dg

dt
=

1 + g

a
(g(1 + a2) + (g + 2)b2) , (5.3)

which are precisely the expressions in eq. (4.4) in [14]. The coset limit is g → −1.

The case of (V II0, II). It turns out that in this case the coset construction is not

possible, i.e. (4.9) has no solution. To simplify the renormalization group flow, we present

just a consistent truncation of the beta-function equations namely, along A=D and B=−C

dA

dt
= − 1

2AG
,

dB

dt
= 0 ,

dG

dt
= − 1

2A2
. (5.4)
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The case of (II, V ). In this case there is no constraint on the coset construction, i.e.

no constraint on Kαβ. We present just a consistent truncation of these equations namely,

along A = D,B = −C

dA

dt
=

(A4 −B2(2 + B)2)

2A
G ,

dB

dt
= (1 + B)(A2 + B(2 + B))G ,

dG

dt
=

(A2 + B2)(A2 + (2 + B)2)

2A2
G2 . (5.5)

The case of (V, V II0). A consistent truncation of the beta-function equations is along

A = D and B = −C

dA

dt
= −2B(B + AG)

AG
,

dB

dt
= 2

(

A +
B

G

)

,
dG

dt
= −2− 2B2

A2
. (5.6)

5.2 Flow in SU(3) and the coset SU(3)/SU(2)

We use the structure constants in the Gell-Mann basis for SU(3) (see, for instance, eq.

(5.2) of the second of [22])

f12
3 = 2 , f14

7 = −f15
6 = f24

6 = f25
7 = f34

5 = −f36
7 = 1 , f45

8 = f67
8 =
√

3 , (5.7)

where the rest are obtained by antisymmetrization and pick up as an SU(2) subgroup the

one generated by Ti, i = 1, 2, 3. Then in is easy to check that the most general invariant

matrix K is

K =















A C D Z 0

−C A Z −D 0

−D −Z A C 0

−Z D −C A 0

0 0 0 0 B















, (5.8)

which has diagonal symmetric part as well as an antisymmetric one.

For the renormalization group flow in the full SU(3) model we take for the matrix M

the form (4.1) with M iα = Mαi = 0 and H = 1
G

I3×3. We find that the system (3.11) leads

to a consistent system and in particular the r.h.s. of (4.2) is zero even though the coset

SU(3)/SU(2) is not a symmetric space. We present the equations in the particular case

of zero antisymmetric part, i.e. when C = D = Z = 0, which is a consistent truncation.

We obtain

dA

dt
=

3A2

2

A(BG + 1)− 4B

B
,

dB

dt
= −3A2 ,

dG

dt
= G2A2 + 2 . (5.9)

For the coset SU(3)/SU(2) the flow equations are the first two in the limit G→ 0.

Similar results can be found for the models SO(4)/SO(3) and Sp(4)/(SU(2) × U(1))

cases as well, but we will not present the details.
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6 Conclusions and future directions

Two-dimensional σ-models related classically by Poisson-Lie T-duality are one-loop renor-

malizable in the usual field theoretical sense in which all infinities can be absorbed into

the coupling constants, as it was proven generally in [13]. In the present paper, using re-

sults of the latter work we proved the quantum equivalence under one-loop renormalization

group flow of general σ-models related by Poisson-Lie T-duality, by explicitly demonstrat-

ing that the systems of beta-function equations obtained in each model separately are in

fact equivalent. Hence, in that respect, [13] and our present work extend in full generality

previous results based on low dimensional examples [10, 14]. In addition, we have studied

general properties of the flows, as well as the associated generalized coset models in this

context. Finally, we provided explicit examples based mainly on three-dimensional algebras

in the Bianchi classification.

It would be very interesting to formulate the renormalization group flow in a duality-

invariant way. For this an appropriate starting point should be the duality-invariant action

formulation of Poisson-Lie T-duality in [25]. Since this action has twice as many fields

as (2.1) and (2.2) and in addition in lacks two-dimensional Lorentz invariance, the corre-

sponding one-loop counter-terms should be derived as a necessary first step.

In trying to explicitly solve the system of the beta-functions for low dimensional models

it helps to know the renormalization group invariants. This can be possibly worked out

example by example, for instance for the flows of the previous section. For the system

(5.3) such an invariant was found in [14] and indeed helped in reducing it into an single,

first order non-linear differential equation. However, for general considerations it would be

interesting to have the forms of some if not of all of such invariants and classify them using

the underlying group theoretic structure of Poisson-Lie T-duality.

As indicated above, in all known examples canonically equivalent classical σ-models are

also equivalent under one-loop renormalization group flow in the sense already explained.

It is interesting to search and provide a general proof of that statement.
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